RASWIN Module SRS Configuring Safety Parameters of Elements

Performance Level?

PL Gfx Module

PL is a measure of the reliability of a safety function. This value depends on different parameters as Probability of failure or Mean time to failure.

PL is divided into five levels (a-e).

PL e gives the best reliability and is equivalent to the required at the highest level of risk

Module: PL Gfx

How to calculate the PL in RASWin?

PL Gfx Module

Standard Modules	You're running RASWin Professional license.					
	277.2727				View HF	RN Scoring
34	Project data:	No.				
neral information	Project name:	Training Machine				
55%	Project description:	Training Project	07/09/2017			
	Company name:	Solidsafe	×	Pro	ject type: Machinery	
ard Access Points	Person responsible:	Jaume Gracia		×	Date: 07/09/2017	
	PLr calculation by:	EN/ISO 12100 &	ISO 13849			
ulate initial HRN	Minimum Project Category:		Minimum Projec	t PLr: d	~	
	Validation method:	Step by step		0		
culate final HRN	PL Module to use:					
Culate final fixis			Logo Image	S Face		
<u> </u>			Logo mago	SOI	LIDSato]	
HRN Gap	Last imported Safety Autom	ation Builder proje	ect:			
SRS						
out Safety Matrix						
	Machine data:					
778	Manufacturer:					×
Final PL	Machine description:					
PL						5 tay
GILCA I						×
PL Graphic						
PL Graphic						

1. Click on PL Gfx Module icon.

PL Gfx Module

- 1. To create a Safety Block of the Emergency Stop Button, double click on Estop icon.
- 2. Complete the following information and click "Ok":

Access Point
Type of component
Number of signals

- 1. Complete the Subsystem information.
- 2. Load an image that describes the subsystem.

PL Gfx Module

1. On the Component Information window, click on "CCF".

PL Gfx Module

On CCF window, there are two option to enter the parameters:

- 1. Directly
- 2. Selecting applied measurements

Option 1: Directly

PL Gfx Module

Option 2: Selecting applied measurements

How to calculate the PL in RASWin? PL Gfx Module

Select the measurements type agree with the element.

How to calculate the PL in RASWin? PL Gfx Module

The measurements selected will be appear

- 1. Select MTTFd.
- 2. (Optional) Enter the MTTFd value directly
- 3. Click on Determine MTTFd value from B10d value.
- 4. Add a B10d value and a additional process cycles.
- 5. If the B10d value of the element is not known, click on "typical components values", and select the component type.
- 6. Press enter on the keyboard.

PL Gfx Module

Option 1: Directly

There are two option to enter the parameters:

1. Select MTTFd.

- 1. Directly
- 2. Determining MTTFd value from the B10d value

PL Gfx Module

Option 2: Determine MTTFd value from B10d

PL Gfx Module

5. If the B10d value of the element is not known, click on "typical components values", and select the component type.

PL Gfx Module

Option 1: Directly

There are two option to enter the parameters:

- 1. Directly
- Select "Select applied measurements to evaluate DC"
- 1. Select "Determine MTTFd value from B10d value".
 - 2. Enter the Diagnostic Coverage value directly
 - 2. If it cannot be entered directly, click on Select applied measurements to evaluate DC.

How to calculate the PL in RASWin? PL Gfx Module

Option 2: Selecting applied measurements

yright 2017, Solidsafe S.L. INC, All Rights Rese

How to calculate the PL in RASWin?

- 1. Repeat the same procedure for the output element.
- 2. Click "Ok"

